Reservoir ========= Description ----------- A reservoir is a pool of units with random connections. The connections are such that the activity of the network is "at the edge of chaos". This concept forms the basis of a particular type of neural networks called liquid-state-machines (LSM). - liquid state machine - input - read-out - LSM with LIF neurons? Implementation -------------- - preliminary operations:: import blabla import pyNCS nsetup = pyNCS.NeuroSetup('my_setuptype.xml', 'my_setup.xml') - create a population:: number_of_units = 500 res = pyNCS.Population('', '') res.populate_by_number(nsetup, 'my_chip', 'my_neuron', number_of_units) - connect the units:: C_res = pyNCS.Connection(res, res, 'excitatory0', fashion='random_all2all') - create input:: inp = pyNCS.Population('', '') inp.populate_by_id(nsetup, 'my_sequencer', 'my_neuron', range(5, 10)) - connect the input to the reservoir:: C_inp = pyNCS.Connection(inp, res, 'excitatory1') # default fashion is one2one - make the input spike:: pattern1 = inp.soma.spiketrains_poisson(random(len(inp)), duration=500) - prepare the hardware:: nsetup.chips[res.neuronblock.neurochip.id].loadBiases('biases/reservoir.biases') # the following is equivalent to the previous statement res.neuronblock.neurochip.loadBiases('biases/reservoir.biases') nsetup.mapping.write() # connections where automatically appended - unleash hell:: # stimulus lasts for 500ms but we want to record more, say 5s out = nsetup.stimulate(pattern1, tDuration=5000) - plot (with monitors is a lot easier and faster!):: # the output out[out.soma.channel].raster_plot() # external input and recurrent input imshow(out[out.synapses.channel].firing_rate(50)) # 50ms time-bin # input stimulus pattern1[inp.soma.channel].raster_plot() Parameters ---------- The parameters for a good reservoir are... ?